MPSI 26 avril 2025

DS de mathématiques n°9

Espaces vectoriels, applications linéaires, matrices — Corrigé

Noté sur 105 pts ± 5 pts pour le soin et la clarté, puis la note est ramené sur 20 en multipliant par 20/93.

24,5 Exercice 1: Trigonalisation de matrice

On considère l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (3x + y + z, 4y + 2z, x - y + 5z). On note β_0 la base canonique de \mathbb{R}^3 . Soit $n \in \mathbb{N}^*$.

1) Donner la matrice A de l'application f dans la base β_0 .

Comme β_0 est la base canonique, on a immédiatement

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 4 & 2 \\ 1 & -1 & 5 \end{pmatrix}$$

2) On pose $u_1 = (1, 1, 0)$, $u_2 = (0, 1, 1)$ et $u_3 = (1, 0, 1)$. Montrer que $\beta = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .

Montrons que (u_1, u_2, u_3) est libre. Soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$. On suppose

$$\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = (0, 0, 0)$$

On en déduit que $(\lambda_1 + \lambda_3, \lambda_1 + \lambda_2, \lambda_2 + \lambda_3) = (0, 0, 0)$, donc

$$\begin{cases} \lambda_1 + \lambda_3 = 0 \\ \lambda_1 + \lambda_2 = 0 \\ \lambda_2 + \lambda_3 = 0 \end{cases} \begin{cases} \lambda_1 + \lambda_3 = 0 \\ \lambda_2 - \lambda_3 = 0 \end{cases} \begin{cases} \lambda_1 + \lambda_3 = 0 \\ \lambda_2 = \lambda_3 \\ \lambda_2 + \lambda_3 = 0 \end{cases} \begin{cases} \lambda_3 = 0 \\ \lambda_1 = 0 \\ \lambda_2 = 0 \end{cases}$$

Donc la famille β est libre. Comme $\operatorname{card}(\beta) = 3 = \dim \mathbb{R}^3$, on en déduit que c'est une base de \mathbb{R}^3 .

3) On note P la matrice de passage de la base β_0 vers la base β . Déterminer P et son inverse.

La matrice de passage de β_0 vers β s'obtient en écrivant les vecteurs de β en colonnes, donc :

$$P = \boxed{\left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right)}$$

Montrons que P est inversible et calculons P^{-1} .

$$\begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & -1 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{pmatrix} L_2 - L_1$$

$$\begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & -1 & 1 & 0 \\ 0 & 0 & 2 & | & 1 & -1 & 1 \end{pmatrix} L_3 - L_2$$

$$\begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} L_3$$

$$\begin{pmatrix} 1 & 0 & 0 & | & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & 0 & | & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & 0 & | & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & | & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & | & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & | & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} L_1 - L_3$$

Ainsi, P est inversible et

$$P^{-1} = \boxed{\frac{1}{2} \left(\begin{array}{rrr} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{array} \right)}$$

4) On note B la matrice de l'application f dans la base β . Déterminer B. Vérifier que B est de la forme $\lambda I_3 + T$ avec T une matrice triangulaire supérieure dont les éléments diagonaux sont nuls .

3

3

On sait que

$$B = P^{-1}AP$$
 (i.e. $\operatorname{Mat}_{\beta}(f) = P_{\beta \to \beta_0} \operatorname{Mat}_{\beta_0}(f) P_{\beta_0 \to \beta}$)

Ainsi,

$$B = P^{-1} \begin{pmatrix} 3 & 1 & 1 \\ 0 & 4 & 2 \\ 1 & -1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$= P^{-1} \begin{pmatrix} 4 & 2 & 4 \\ 4 & 6 & 2 \\ 0 & 4 & 6 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \times \mathcal{Z} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 3 & 1 \\ 0 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 2 & 0 \\ 0 & 4 & 2 \\ 0 & 0 & 4 \end{pmatrix}$$

On constate que B est bien de la forme $\lambda I_3 + T$ avec $\lambda = 4$ et $T = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$

7,5 5) Calculer B^n .

Comme T et $4I_3$ commutent, on a

$$B^{n} = (4I_{3} + T)^{n}$$
$$= \sum_{k=0}^{n} {n \choose k} T^{k} (4I_{3})^{n-k}$$

Or, $T^2 = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et T^3 est la matrice nulle.

• Si $n \ge 2$, alors

$$B^{n} = \binom{n}{0} T^{0} (4I_{3})^{n} + \binom{n}{1} T (4I_{3})^{n-1} + \binom{n}{2} T^{2} (4I_{3})^{n-2} + \underbrace{\sum_{k=2}^{n} \binom{n}{k} T^{k} (4I_{3})^{n-k}}_{=0_{3,3}}$$

$$= 4^{n} \binom{1}{0} \binom{1}{0} \binom{0}{0} \binom{0}$$

• Si
$$n \le 1$$
, alors $B^n = \begin{cases} I_n & \text{si } n = 0 \\ B & \text{si } n = 1 \end{cases}$

6 6) Déterminer l'expression de A^n en fonction de B^n , P et P^{-1} , et calculer A^n .

On a vu que $B = P^{-1}AP$ en question 4). Ainsi, $A = PBP^{-1}$. En particulier,

$$A^{n} = \underbrace{PBP^{-1}PBP^{-1}(...)PBP^{-1}}_{n \text{ fois}} = \underbrace{PB^{n}P^{-1}}_{n \text{ fois}}$$

Calculons à présent A^n .

• Si
$$n \le 1$$
, alors $A^n = \begin{cases} I_n & \text{si } n = 0 \\ A & \text{si } n = 1 \end{cases}$

• Si $n \geq 2$, par la question précédente,

$$\begin{split} A^n &= \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} 4^{n-1} \begin{pmatrix} 4 & 2n & \frac{n(n-1)}{2} \\ 0 & 4 & 2n \\ 0 & 0 & 4 \end{pmatrix} P^{-1} \\ &= 4^{n-1} \begin{pmatrix} 4 & 2n & 4 + \frac{n(n-1)}{2} \\ 4 & 2n+4 & 2n+\frac{n(n-1)}{2} \\ 0 & 4 & 2n+4 \end{pmatrix} \times \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \\ &= 4^{n-1} \begin{pmatrix} 2 & n & 2 + \frac{n(n-1)}{4} \\ 2 & n+2 & n+\frac{n(n-1)}{4} \\ 0 & 2 & n+2 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \\ &= 4^{n-1} \begin{pmatrix} 4-n+\frac{n(n-1)}{4} & n-\frac{n(n-1)}{4} & n+\frac{n(n-1)}{4} \\ \frac{n(n-1)}{4} & 4-\frac{n(n-1)}{4} & 2n+\frac{n(n-1)}{4} \\ n & -n & n+4 \end{pmatrix} \\ &= 4^{n-2} \begin{pmatrix} 16-4n+n(n-1) & 4n-n(n-1) & 4n+n(n-1) \\ n(n-1) & 16-n(n-1) & 8n+n(n-1) \\ 4n & -4n & 4n+16 \end{pmatrix} \\ &= \begin{pmatrix} n^2-5n+16 & -n^2+5n & n^2+3n \\ n^2-n & -n^2+n+16 & n^2+7n \\ 4n & -4n & 4n+16 \end{pmatrix} \end{split}$$

Exercice-Problème 2 : Décomposition d'endomorphisme en somme de projecteurs

Soit E un \mathbb{K} -espace vectoriel. On note 0 l'endomorphisme nul de E et Id l'identité de E. Soit $f \in \mathcal{L}(E)$ tel que :

$$f^2 - 6f + 8\mathrm{Id} = 0$$

où on a employé la notation multiplicative pour représenter la composition d'endomorphismes.

Partie I

40

5 1) Montrer que f est un automorphisme de E et donner f^{-1} en fonction de f.

On a $f^2 - 6f = -8$ Id donc

$$f \circ \left(\frac{f - 6\operatorname{Id}}{-8}\right) = \operatorname{Id}$$

Et on montre de même que $\left(\frac{f-6\mathrm{Id}}{-8}\right)\circ f=\mathrm{Id}$. Ainsi, f est inversible et $f^{-1}=\left\lceil\frac{6\mathrm{Id}-f}{8}\right\rceil$. Ainsi, f est un endomorphisme bijectif, donc un isomorphisme.

1,25 2) Calculer $(f-2\mathrm{Id}) \circ (f-4\mathrm{Id})$ et $(f-4\mathrm{Id}) \circ (f-2\mathrm{Id})$.

Un calcul direct donne:

$$(f - 2Id) \circ (f - 4Id) = f^2 - 2f - 4f + 8Id = \boxed{0}$$

On montre de même que $(f - 4Id) \circ (f - 2Id) = \boxed{0}$

3) Soit $x \in E$. Montrer que $f(x) - 4x \in \text{Ker}(f - 2\text{Id})$ et que $f(x) - 2x \in 1,75$ Ker(f - 4Id).

$$(f-2\mathrm{Id})(f(x)-4x)=(f-2\mathrm{Id})\circ (f-4\mathrm{Id})(x)=0(x)=0_E$$
 donc $f(x)-4x\in \mathrm{Ker}\,(f-2\mathrm{Id}).$ On montre de même que $f(x)-2x\in \mathrm{Ker}\,(f-4\mathrm{Id}).$

4) Soit $x \in E$. En écrivant x comme une combinaison linéaire de f(x) - 4x et de f(x) - 2x, démontrer que :

$$E = \operatorname{Ker}(f - 2\operatorname{Id}) + \operatorname{Ker}(f - 4\operatorname{Id})$$

4

On remarque que

$$x = -\frac{1}{2}(f(x) - 4x) + \frac{1}{2}(f(x) - 2x)$$

On pose $x_2 = -\frac{1}{2}(f(x) - 4x)$ et $x_4 = \frac{1}{2}(f(x) - 2x)$. Or, par la question précédente, on a $f(x) - 4x \in \text{Ker}(f - 2\text{Id})$, donc $x_2 \in \text{Ker}(f - 2\text{Id})$ car c'est un s.e.v. De même, $x_4 \in \text{Ker}(f - 4\text{Id})$. Comme

$$x = x_2 + x_4$$

on en déduit que $x \in \text{Ker}(f-2\text{Id}) + \text{Ker}(f-4\text{Id})$. Par arbitraire sur x, on en déduit que E = Ker(f-2Id) + Ker(f-4Id), l'autre inclusion étant évidente.

5) En déduire que :

$$E = \operatorname{Ker}(f - 2\operatorname{Id}) \oplus \operatorname{Ker}(f - 4\operatorname{Id})$$

3

3

3

Par la question précédente, il suffit de montrer que $\operatorname{Ker}(f-2\operatorname{Id}) \cap \operatorname{Ker}(f-4\operatorname{Id}) = \{0_E\}$. Soit $x \in \operatorname{Ker}(f-2\operatorname{Id}) \cap \operatorname{Ker}(f-4\operatorname{Id})$.

- Comme $x \in \text{Ker}(f 2\text{Id})$, on a $(f 2\text{Id})(x) = 0_E$, donc f(x) = 2x.
- Comme $x \in \text{Ker}(f 4\text{Id})$, on a f(x) = 4x.

Ainsi, 2x = 4x, ou encore $2x = 0_E$, c'est-à-dire $x = 0_E$. Ainsi, $\operatorname{Ker}(f - 2\operatorname{Id}) \cap \operatorname{Ker}(f - 4\operatorname{Id}) = \{0_E\}$, l'autre inclusion étant évidente.

Les parties II et III sont indépendantes.

Partie II.

6) Démontrer que l'endormorphisme $g=f-3\mathrm{Id}$ est une symétrie et reconnaitre ses éléments caractéristiques.

On a

$$g \circ g = (f - 3\operatorname{Id}) \circ (f - 3\operatorname{Id}) = f^2 - 6f + 9\operatorname{Id} = f^2 - 6f + 8\operatorname{Id} + \operatorname{Id} = 0 + \operatorname{Id} = \operatorname{Id}$$

De plus, g est linéaire par combinaison linéaire d'applications linéaires. Ainsi, g est une symétrie. On sait qu'alors g est une symétrie par rapport à $\operatorname{Ker}(g-\operatorname{Id})$ parallèlement à $\operatorname{Ker}(g+\operatorname{Id})$, c'est-à-dire par rapport à $\overline{\operatorname{Ker}(f-4\operatorname{Id})}$ parallèlement à $\overline{\operatorname{Ker}(f-2\operatorname{Id})}$.

7) On note p_2 le projecteur sur Ker $(f-2\mathrm{Id})$ parallèlement à Ker $(f-4\mathrm{Id})$ et p_4 le projecteur sur Ker $(f-4\mathrm{id})$ parallèlement à Ker $(f-2\mathrm{Id})$. Pour tout $x \in E$, déterminer $p_4(x)$ et $p_2(x)$ en fonction de x et de f(x).

Soit $x \in E$. On a vu en question 4) que $x = x_2 + x_4$ avec

$$x_2 = -\frac{1}{2}(f(x) - 4x) \in \text{Ker}(f - 2\text{Id})$$
 et $x_4 = \frac{1}{2}(f(x) - 2x) \in \text{Ker}(f - 4\text{Id})$

Il s'agit donc de la décomposition de x selon la somme directe $\operatorname{Ker}(f-2\operatorname{Id}) \oplus$

Ker(f-4Id). Ainsi,

$$p_2(x) = x_2 = -\frac{1}{2}(f(x) - 4x)$$

$$p_4(x) = x_4 = \frac{1}{2}(f(x) - 2x)$$

1,5 8) En déduire que $f = 2p_2 + 4p_4$.

Soit $x \in E$. On a

$$2p_2(x) + 4p_4(x) = -(f(x) - 4x) + 2(f(x) - 2x) = f(x)$$

Ainsi, on a bien $f = 2p_2 + 4p_4$

1,5 9) Montrer que $p_2 \circ p_4 = 0$ et que $p_4 \circ p_2 = 0$.

Soit $x \in E$. Par définition, $p_4(x) \in \text{Ker}(f-2\text{Id})$. Or, $\text{Ker}\,p_2 = \text{Ker}(f-2\text{Id})$. Ainsi, $p_2(p_4(x)) = 0_E$. Par arbitraire sur x, on en déduit que $p_2 \circ p_4 = 0$. On montre de même que $p_4 \circ p_2 = 0$.

1,5 10) Soit $k \in \mathbb{N}$. Simplifier p_2^k et p_4^k .

Comme p_2 est un projecteur, on a $p_2 \circ p_2 = p_2$. Ainsi, par récurrence immédiate

$$p_2^k = \begin{cases} \text{Id} & \text{si } k = 0 \\ p_2 & \text{si } k \ge 1 \end{cases}$$

4 11) Soit $n \in \mathbb{N}^*$. Calculer f^n en fonction de p_2 , p_4 et n.

Par la question 8), on a $f^n = (2p_2 + 4p_4)^n$. Comme p_2 et p_4 commutent par la

question précédente, on en déduit par la formule du binôme :

$$f^{n} = \sum_{k=0}^{n} \binom{n}{k} 2^{k} p_{2}^{k} 4^{n-k} p_{4}^{n-k}$$

$$= \binom{n}{0} 2^{0} p_{2}^{0} 4^{n} p_{4}^{n} + \binom{n}{n} 2^{n} p_{2}^{n} 4^{0} p_{4}^{0} + \sum_{k=1}^{n-1} \binom{n}{k} 2^{k} p_{2}^{k} 4^{n-k} p_{4}^{n-k}$$

$$= 4^{n} p_{4} + 2^{n} p_{2} + \sum_{k=1}^{n-1} \binom{n}{k} 2^{k} 4^{n-k} p_{2} p_{4} \qquad \text{par la question précédente}$$

Or, $p_2p_4 = 0$ par la question 9), si bien que le dernier terme est nul. Ainsi,

$$f^n = \boxed{2^n p_2 + 4^n p_4}$$

Partie III.

2 12) Montrer que $\operatorname{Im}(f-2\operatorname{Id}) \subset \operatorname{Ker}(f-4\operatorname{Id})$ et $\operatorname{Im}(f-4\operatorname{Id}) \subset \operatorname{Ker}(f-2\operatorname{Id})$.

Soit $y \in \text{Im}(f - 2\text{Id})$. Montrons que $y \in \text{Ker}(f - 4\text{Id})$. Comme $y \in \text{Im}(f - 2\text{Id})$, il existe $x \in E$ tel que y = (f - 2Id)(x). Ainsi,

$$(f - 4Id)(y) = (f - 4Id) \circ (f - 2Id)(x) = 0(x) = 0_E$$

On en déduit que $y \in \text{Ker}(f - 4\text{Id})$. Ainsi $\text{Im}(f - 2\text{Id}) \subset \text{Ker}(f - 4\text{Id})$. On montre de la même manière que $\text{Im}(f - 4\text{Id}) \subset \text{Ker}(f - 2\text{Id})$.

- 13) Démontrer que Im(f-2Id) = Ker(f-4Id) et Im(f-4Id) = Ker(f-2Id) de deux façons :
 - a) Dans le cas où E est supposé de dimension finie, en utilisant le théorème du rang.

On a déjà montré que $\operatorname{Im}(f-2\operatorname{Id}) \subset \operatorname{Ker}(f-4\operatorname{Id})$. Pour conclure, il suffit de montrer que dim $\operatorname{Im}(f-2\operatorname{Id}) = \dim \operatorname{Ker}(f-4\operatorname{Id})$. Or, par le théorème du rang appliqué à $f-2\operatorname{Id}$ et $f-4\operatorname{Id}$, on a

$$\dim \operatorname{Im} (f - 2\operatorname{Id}) = \dim E - \dim \operatorname{Ker} (f - 2\operatorname{Id})$$

De plus, par la question 5), les espaces $\operatorname{Ker}(f-2\operatorname{Id})$ et $\operatorname{Ker}(f-4\operatorname{Id})$ sont supplémentaires dans E, donc dim $\operatorname{Ker}(f-2\operatorname{Id}) = \dim E - \dim \operatorname{Ker}(f-2\operatorname{Id})$

4Id). Ainsi, il vient:

$$\dim \operatorname{Im} (f - 2\operatorname{Id}) = \dim E - (\dim E - \dim \operatorname{Ker} (f - 4\operatorname{Id}))$$
$$= \dim \operatorname{Ker} (f - 4\operatorname{Id})$$

On en conclut que Im (f-2Id) = Ker(f-4Id). On montre de même que Im (f-4Id) = Ker(f-2Id).

b) Dans le cas général, où E est de dimension quelconque.

On a déjà montré que $\operatorname{Im}(f-2\operatorname{Id}) \subset \operatorname{Ker}(f-4\operatorname{Id})$. Montrons l'inclusion réciproque. Soit $x \in \operatorname{Ker}(f-4\operatorname{Id})$. Montrons que $x \in \operatorname{Im}(f-2\operatorname{Id})$. Comme $x \in \operatorname{Ker}(f-4\operatorname{Id})$, on a f(x) = 4x. On cherche $z \in E$ tel que

$$x = (f - 2Id)(z) = f(z) - 2z$$

On remarque que

$$2x = f(x) - 2x = (f - 2Id)(x)$$

et donc

5

$$x = (f - 2\mathrm{Id})\left(\frac{x}{2}\right)$$

En posant $z = \frac{x}{2}$, on a bien $x = (f - 2\mathrm{Id})(z)$, donc $x \in \mathrm{Im}(f - 2\mathrm{Id})$. Finalement, $\mathrm{Ker}(f - 4\mathrm{Id}) \subset \mathrm{Im}(f - 2\mathrm{Id})$. D'où $\mathrm{Ker}(f - 4\mathrm{Id}) = \mathrm{Im}(f - 2\mathrm{Id})$. On montre de même que $\mathrm{Ker}(f - 2\mathrm{id}) = \mathrm{Im}(f - 4\mathrm{id})$.

25 Exercice 3: Tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ contient une matrice inversible

Soit n un entier supérieur ou égal à 2. On note $\mathcal{M}_n(\mathbb{K})$ l'ensemble des matrices de taille n à coefficients dans \mathbb{K} et $\mathcal{M}_n(\mathbb{K})^*$ l'espace des formes linéaires sur $\mathcal{M}_n(\mathbb{K})$. Pour toute matrice carrée M, on notera sa trace $\operatorname{Tr}(M)$. Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, on note φ_A l'application linéaire de $\mathcal{M}_n(\mathbb{K})$ dans \mathbb{K} définie par : $\forall B \in \mathcal{M}_n(\mathbb{K})$ $\varphi_A(B) = \operatorname{Tr}(AB)$.

1) Montrer que l'application $\Phi: A \mapsto \varphi_A$ est un isomorphisme de $\mathcal{M}_n(\mathbb{K})$ dans $\mathcal{M}_n(\mathbb{K})^*$.

Tout d'abord, montrons que Φ est linéaire. Soit $\alpha_1, \alpha_2 \in \mathbb{K}$ et $A_1, A_2 \in \mathcal{M}_n(\mathbb{K})$. On a :

$$\Phi(\alpha_1 A_1 + \alpha_2 A_2) = \varphi_{\alpha_1 A_1 + \alpha_2 A_2}$$

$$\alpha_1 \Phi(A_1) + \alpha_2 \Phi(A_2) = \alpha_1 \varphi_{A_1} + \alpha_2 \varphi_{A_2}$$

Pour conclure, il faut donc montrer l'égalité des deux applications dans les membres de droites ci-dessus. Soit $B \in \mathcal{M}_n(\mathbb{K})$. Par linéarité de la trace :

$$\varphi_{\alpha_1 A_1 + \alpha_2 A_2}(B) = \operatorname{Tr} ((\alpha_1 A_1 + \alpha_2 A_2) B)$$

$$= \alpha_1 \operatorname{Tr} (A_1 B) + \alpha_2 \operatorname{Tr} (A_2 B)$$

$$= \alpha_1 \varphi_{A_1}(B) + \alpha_2 \varphi_{A_2}(B)$$

Par arbitraire sur B, on a donc bien $\varphi_{\alpha_1 A_1 + \alpha_2 A_2} = \alpha_1 \varphi_{A_1} + \alpha_2 \varphi_{A_2}$. On en conclut que Φ est linéaire. Montrons à présent que Φ est bijective. Comme dim $\mathcal{M}_n(\mathbb{K})^* = \dim \mathcal{M}_n(\mathbb{K})$, il suffit de montrer que Φ est injective. Soit donc $A \in \operatorname{Ker} \Phi$. Montrons que A est la matrice nulle. Comme $\Phi(A) = \varphi_A = 0_{\mathcal{M}_n(\mathbb{K})^*}$, on en déduit que

$$\forall B \in \mathcal{M}_n(\mathbb{K}) \qquad \operatorname{Tr}(AB) = 0$$

En particulier, pour tous $i, j \in [1, n]$, on peut prendre $B = E_{ij}$ la matrice élémentaire d'indice (i, j) de $\mathcal{M}_n(\mathbb{K})$. Dans ce cas,

$$\operatorname{Tr}(AB) = \sum_{k=1}^{n} (AB)_{kk}$$

$$= \sum_{k=1}^{n} \sum_{\ell=1}^{n} A_{k\ell} B_{\ell k}$$

$$= \sum_{k=1}^{n} \sum_{\ell=1}^{n} A_{k\ell} \delta_{i\ell} \delta_{jk}$$

$$= A_{ji}$$

Ainsi, pour tous $i, j \in [1, n]$, on a $A_{ji} = \text{Tr}(AB) = 0$, donc A est nulle. Φ est donc injective, c'est un isomorphisme.

- 2) On considère \mathcal{H} un hyperplan de $\mathcal{M}_n(\mathbb{K})$.
 - a) Démontrer qu'il existe $A \in \mathcal{M}_n(\mathbb{K})$ telle que :

$$\forall M \in \mathcal{M}_n(\mathbb{K}) \qquad (M \in \mathcal{H} \iff \operatorname{Tr}(AM) = 0)$$

Comme \mathcal{H} est un hyperplan de $\mathcal{M}_n(\mathbb{K})$, on peut l'écrire comme le noyau d'une forme linéaire non nulle ψ , i.e. $\mathcal{H} = \operatorname{Ker} \psi$. Cependant, par la question précédente, Φ est bijective, donc surjective : la forme linéaire ψ admet donc un antécédent par Φ . Ainsi, il existe $A \in \mathcal{M}_n(\mathbb{K})$ telle que $\psi = \Phi(A) = \varphi_A$. On en déduit que

$$\mathcal{H} = \operatorname{Ker} \varphi_A$$

En particulier, pour tout $M \in \mathcal{M}_n(\mathbb{K})$, on a

$$M \in \mathcal{H} \iff \varphi_A(M) = 0 \iff \operatorname{Tr}(AM) = 0$$

d'où le résultat voulu.

7

b) Soit $r \in [1, n]$. Dans cette question uniquement, on suppose que $A = J_r$, où J_r est la matrice dont les coefficients sont égaux à δ_{ij} , si $(i, j) \in [1, r]^2$ et 0 sinon. Démontrer que \mathcal{H} contient une matrice inversible.

Par la question précédente, il suffit de trouver une matrice M inversible telle que $\text{Tr}(J_r M) = 0$.

• Si $r \geq 2$, on peut poser :

$$M = \begin{pmatrix} -r+1 & & 0 \\ & 1 & \\ & & \ddots & \\ 0 & & 1 \end{pmatrix} = -rE_{11} + I_n$$

C'est bien une matrice inversible car elle est échelonnée avec n pivots. De plus, par produit de matrices diagonales,

$$J_r M = \begin{pmatrix} -r+1 & & & & \\ & 1 & & & & \\ & & \ddots & & & \\ & & & 1 & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & 0 \end{pmatrix} = -r E_{11} + J_r$$

Ainsi, $\operatorname{Tr}(J_r M) = -r \operatorname{Tr}(E_{11}) + \operatorname{Tr}(J_r) = -r \times 1 + r = 0$. D'où $M \in \mathcal{H}$ et M est inversible.

$$M = \left(\begin{array}{ccc} 0 & 1 & & \\ 1 & 0 & & \\ & & 1 & \\ & & & \ddots & \\ 0 & & & 1 \end{array}\right)$$

i.e. M est la matrice de permutation associée aux indices 1 et 2. Cela montre que M est inversible (avec $M^{-1} = M$). De plus, J_rM , ou encore J_1M , est la matrice obtenue en permutant les colonnes 1 et 2 de J_1 , ce qui donne :

$$J_1 M = \left(\begin{array}{ccc} 0 & 1 & & \\ 0 & & \\ & 0 & \\ & & \ddots & \\ 0 & & & 0 \end{array}\right)$$

Ainsi, $\operatorname{Tr}(J_1M) = 0$. On en déduit que $M \in \mathcal{H}$.

c) En déduire que \mathcal{H} contient une matrice inversible dans le cas général.

Par la question a), il suffit de trouver une matrice $M \in GL_n(\mathbb{K})$ telle que

$$\operatorname{Tr}(AM) = 0$$

On sait que A est équivalente à la matrice J_r avec $r = \operatorname{rg}(A)$, donc il existe $P, Q \in GL_n(\mathbb{K})$ telles que

$$A = PJ_rQ$$

- Si r = 0, alors J_r = J₀ = 0_{n,n}, c'est la matrice nulle et on peut poser M = I_n (par exemple) qui est bien inversible et vérifie Tr (AM) = 0, donc M ∈ H. Note: en fait le cas r = 0 ne peut pas arriver car il conduit à H = M_n(K), alors que H est un hyperplan donc de dimension strictement inférieure à M_n(K).
- \bullet Si $r \geq 1$, par la question précédente, il existe une matrice inversible

 $N \in \mathcal{M}_n(\mathbb{K})$ telle que Tr $(J_r N) = 0$. Or,

$$0 = \operatorname{Tr}(J_r N)$$

$$= \operatorname{Tr}(J_r Q Q^{-1} N P^{-1} P)$$

$$= \operatorname{Tr}(P J_r Q Q^{-1} N P^{-1})$$

$$= \operatorname{Tr}(A Q^{-1} N P^{-1})$$

Ainsi, en posant $M=Q^{-1}NP^{-1}$, on obtient $\mathrm{Tr}\left(AM\right)=0$. Donc $M\in\mathcal{H}$. De plus M est inversible en tant que produit de matrices inversibles. D'où le résultat.

15,5 Exercice 4: Les morphismes transformistes

Soit E un e.v. et f, g, h des endomorphismes de E. On utilisera la notation multiplicative sur $\mathcal{L}(E)$, de sorte que fg désigne la composée $f \circ g$. On suppose que f, g et h vérifient f = gh, g = hf et h = fg.

3,5 1) Montrer que f, g et h ont le même noyau et ont la même image.

Soit $x \in \text{Ker } f$. Alors comme g = hf, on a $g(x) = h(f(x)) = h(0_E) = 0_E$ donc $x \in \text{Ker } g$. Ainsi Ker $f \subset \text{Ker } g$. De même, on montre que Ker $g \subset \text{Ker } h$ et que Ker $h \subset \text{Ker } f$. Donc $\boxed{\text{Ker } f = \text{Ker } g = \text{Ker } h}$.

Soit $y \in \text{Im } f$. Alors il existe $x \in E$ tel que y = f(x) = g(h(x)). En particulier, y = g(z) avec $z = h(x) \in E$, donc $y \in \text{Im } g$. Ainsi, $\text{Im } f \subset \text{Im } g$. On montre de même que $\text{Im } g \subset \text{Im } h$ et $\text{Im } h \subset \text{Im } f$. Finalement, $\boxed{\text{Im } f = \text{Im } g = \text{Im } h}$.

6 2) Montrer que $f^5 = f$.

On remarque que

$$f^2 = f(gh) = (fg)h = h^2$$

et

$$g^2 = g(hf) = (gh)f = f^2$$

si bien que $f^2 = g^2 = h^2$. Ainsi,

$$f^{5} = ff^{2}f^{2}$$

$$= fg^{2}h^{2}$$

$$= (fg)(gh)h$$

$$= hfh$$

$$= gh$$

$$= f$$

3) Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.

Soit $y \in \text{Ker}(f) \cap \text{Im}(f)$. Montrons que $y = 0_E$. Il existe $x \in E$ tel que y = f(x). En appliquant f^4 , on obtient $f^4(y) = f^5(x) = f(x)$ par la question précédente. Ainsi, $f^4(y) = y$. Or, $y \in \text{Ker}(f)$, donc $f^4(y) = f^3(0_E) = 0_E$. Ainsi, $y = 0_E$. On a donc $\text{Ker}(f) \cap \text{Im}(f) = \{0_E\}$.

Montrons que E = Ker(f) + Im(f). Soit $x \in E$. Montrons qu'il existe $x_K \in \text{Ker}(f)$ et $x_I \in \text{Im}(f)$ tels que $x = x_K + x_I$. On procède par analyse-synthèse.

• Analyse : soit x_K, x_I qui vérifient les conditions ci-dessus. On a alors qu'il existe $x' \in E$ tel que $x_I = f(x')$. De plus,

$$f(x) = f(x_K) + f(x_I)$$

ďoù

$$f(x) = 0_E + f^2(x')$$

On applique f^3 des deux côtés, de sorte que

$$f^4(x) = f^5(x') = f(x') = x_I$$

On en déduit que nécessairement $x_I = f^4(x)$, et que par suite

$$x_K = x - x_I = \boxed{x - f^4(x)}$$

• Synthèse : vérifions que les valeurs trouvées pour x_K et x_I vérifient les conditions demandées. On a d'une part $x = x_K + x_I$ de manière évidente. De plus, $x_I = f(f^3(x))$ donc $x_I \in \text{Im}(f)$. Enfin,

$$f(x_K) = f(x) - f^5(x) = f(x) - f(x) = 0_E$$

donc $x_K \in \text{Ker}(f)$.

Finalement, $x \in \text{Ker}(f) + \text{Im}(f)$. Cela montre bien que E = Ker(f) + Im(f) par arbitraire sur x, l'autre inclusion étant évidente.

En définitive, on a donc montré que $E = \text{Ker}(f) \oplus \text{Im}(f)$.